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EXECUTIVE SUMMARY

In order to assess the potential impact of the accidental introduction of an organic chemical

into the environment, information is needed concerning its environmental fate. The fate of an

organic chemical in the environment depends on a variety of physical, chemical and biological

processes. Mathematical models, which attempt to integrate these processes, are widely used

to predict the transport and distribution of organic contaminants in the environment. Use of

these models requires a variety of input parameters which describe site and contaminant

physical-chemical and biological characteristics. Several important contaminant pioperties uscd

to assess the mobility and persistence of a chemical are aqueous solubility, octanof/watcr

partition coefficient, soil/water sorption coefficient, Henry's Law constant, bioconcentratiun

factor, and transfornation rates for biodegradation, photolysis and hydrolysis.

One major limitation to the use of environmental fate models has been the lack of suitable

values for many of these properties. The scarcity of data, due mainly to the difficulty and cost

involved in experimental determination of such properties, has resulted in an increased rCliMce

on the use of estimated values for many applications.

Quantitative Structure-Property Relationships (QSPRs) and Quantitative Property-lProperty

Relationships (QPPRs) are methods by which properties of a chemical can be estimated from a

knowledge of the structure of a molecule or from another more easily obtained property.

Selection and application of the most appropriate QSPRs or QPPRs for a given compound is

based on several factors including: the availability of required input, the methodology for

calculating the necessary topological information, the appropriateness of a correlation to the

chemical of interest, and an understanding of the mechanisms controlling the property being

estimated.

A microcomputer based Property Estimation Program and Database (PEP-DB), utilizing

molecular connectivity indices (MCI)-property and property-property correlations and

UNIFAC derived activity coefficients, is being developed to provide both experts and non-
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experts with a fast, economical method to estimate a compound's aqueous solubility,

octanol/water partition coefficient, vapor pressure, organic carbon normiali ed soil solption

coefficient (Ko,), bioconcentration factor (BCF), and Henry's Law constant for use in

environmental fate modeling. The user can input the required structural information usinag

either Simplified Molecular Input Line Entry System (SMILES) notation or connection tlbles

generated from two commercially available two-dimensional drawing programs, ChemDraw :1 '1

or Chemlntoshm. Estimates of predictor accuracy are provided along with the estimated

property values. This report describes the development and current status of PEP-DB.
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OBJECTIVES OR STATEMENT OF WORK-WJD

The primary goal of this project is to develop a microcomputer-based expert system

utilizing Quantitative Structure Activity Relationships (QSARs) to predict the physical-chemical

properties of an organic chemical which are necessary to model its environmental fate. The

specific properties that are being investigated include: aqueous solubility (S), vapor pressure

(Vp), organic carbon normalized soil/water partition coefficient (Koc), Henry's Law constant

(H), and bioconcentration factor (BCF).

In order to achieve the primary goal of this research, the following specific objectives are

being accomplished:

1. To compile an accurate database of experimentally determined values of aqueous solubility,

vapor pressure, soil/water partition coefficient, Henry's Law constant, and

bioconcentration and bioaccumulation factors for a wide variety of organic compounds.

The database includes compounds exhibiting a broad range of physical and chemical

properties and expected mobility and persistence.

2. Using the database developed in Objective 1, evaluate and refine existing methods and/or

develop new methods for estimating these contaminant properties using QSARs.

3 Develop a microcomputer-based decision support system which incorporates the methods

developed in Objective 2, to allow the prediction of environmental fate and transport

properties of an organic contaminant upon inputting its structure. An estimate of the

accuracy of the predicted value is also provided from the decision support system.

4. Test the ability of the decision support system developed in Objective 3 to provide an

accurate estimate of these environmental fate and transport properties. This will be done

using a test set of chemicals of interest to the USAF (solvents, fuels, pesticides) for which

accurate experimental values are available.
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BACKGROUND AND SIGNIFICANCE

Nature of the problem

In order to assess the potential impact that the introduction of an organic chemical into the

environment will have, information is needed concerning its environmental fate.

Environmental fate encompasses the transport and degradation processes which determine the

behavior of a chemical released into the environment. The fate of an organic chemical

introduced into the environment depends on a variety of physical, chemical and biological

processes. Mathematical models, which attempt to integrate these processes, are widely used

to predict the environmental transport and distribution of organic contaminants. Use of these

models requires a variety of input parameters concerning site and contaminant physical-

chemical and biological characteristics. Several important contaminant properties used to assess

the mobility and persistence of a chemical are listed below:

Mobility Persistence

Henry's Law constant Biodegadation Rate

(or vapor pressure and aqueous solubility) Photolysis Rate

Bioconcentration factor Hydrolysis Rate

Soil/water partition coefficients Oxidation Rate

One major limitation to the use of such models has been the lack of suitable values for

many of the properties listed above. The scarcity of data, due mainly to the difficulty and cost

involved in experimental determination of such properties, has resulted in an increased reliance

on the use of estimated values for many applications.

Ouantitative Structure-activity relationships (QSARs

Quantitative Structure-Activity Relationships (QSARs) are sources of such data that are

increasingly recognized as rapid, practical, and inexpensive methods with which to estimate

values of some constants or properties necessary for fate assessment models. QSARs are

methods by which data or information on the properties of a chemical can be inferred or
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calculated from a knowledge of the structure of a molecule or from another more casily

obtafined property without a specific concern for molecular structure.

Most QSAR methods currently used to estimate contaminant properties fall into one the

following categories (Lyman, 1985):

1. Correlations between the property of interest and another more easily obtained property.

2. Correlations between the property of interest and various topological indexes.

3. Calculation of the property of interest using fragment or group contribution methods.

4. Theoretical equations, generally containing parameters that are experimentally or

empirically derived.

Correlations between the property of interest and another more easily obtained property:

One of the most useful and widely used type of estimation method is a simple linear

regression between two properties. Frequently this regression is expressed in terms of the log

of the two properties. Researchers have found that a number of environmental properties can

be related to one another in this manner. For examnple, octanol/water partition coefficient (K,,,,.)

has been used to estimate soil sorption coefficients (Karickhoff, 1979) aqueous solubilitv

(Chiou et al, 1977 and Mackay et al., 1980), bioconcentration factors (Neely et al.. 1987.

Chiou et al., 1977), and aquatic toxicity (Koneman, 1980).

One important limitation in using this approach is that in many cases, values for the

pi perty used to estimate the property of interest are also not available. In addition, when

using this approach it is essential to evaluate the data used to generate the correlation

expression. In many instances the reliability correlation expression was derived using only one

chemical class, a narrow range of property values, poor quality data, or estimated property

values in the regression analysis. It is also important not to use a regression equation outside

of the range of data from which it was derived.

Fragment constant methods

These methods generally assume that a single numerical value, referred to as a fragment

constant, will represent the contribution of a specified atom, fragment (a group of atoms
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bonded together), or structural factor to the property of interest. Probably the most widely

used fragment constant method has been developed by Hansch and 1.co (1979) for cntilmuinC

octanol-water partition coefficients (K,,,). Usi.g a large database of measturcd values ot K,,,,.

fragment constants have been developed for over 160 atoms or fragments and for a variety of

structural factors (double and triple bond, ring aromatic rings, etc.). These fragment constants

and structural factors are used to estimate a value of log Kow for a particular chemical using the

following expression.

log K)w (fragment values) + E (factor values)

Another example of the fragment constant approach to predicting properties is the

UNAFAC (UNIQUAC Functional Group Activity Coefficient) solution of groups method of

calculating activity coefficients. The UNIFAC method was developed to eatimate activity

coefficients in mixtures of nonelectrolytes (Fredenslund et al., 1977). In this techni(Iue. the

activity coefficient is divided into two parts, a combinatorial part which reflects the size aiid

shape of the molecule present and a residual portion which depends on functional group

interactions. Various parameters, such as van der Waals group volumes and surface areas and

group interaction parameters, are input into a series of equations from which the combinatorial

and residual parts are calculated. Values for the group parameters have been tabulated and can

be found in the literature (Frendenslund et al., 1977 and Gmehling, 1982). Lyman et al.

(1982) give several examples illustrating the use of this technique.

The UNIFAC method was used by Arbunkle (1983) to calculate the activity coefficients for

21 organic compounds. Solubility values were than calculated from the UNIFAC derived

activity coefficients and compared to experimental values. The calculated solubility values

were generally lower than the experimental values and the largest errors were gener'l'ty

associated with the least soluble compounds.

Lyman (1985) summarized the limitations associated with the use of fragment cony,!a

methods as: most fragment constants are derived from compounds with no more that one
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functional group, most are limited in thc number of fragments and fiact ,rs thcv covcr, icallne

that for certain types of compounds "ie fragments and factors arc unvailahic: t;i, ,ipplicitiOn to

structurally complex molecules can be difficult; many make no distinction bctween positional

isomers of a comp--.nd; and they may be difficult to use.
Correlations Between the Property of Interest and Topological Indexes

Topological indexes attempt to translate molecular structures into unique characteristic

structural descriptors that can be expressed numerically. One of the most widely used

topological index is the molecular connectivity index (MCI) developed by Randic (1972), and

refined and expanded by Kier and Hall (1976, 1980, 1986). Molecular connectivity is a

method of bond counting from which topological indexes, based on the struct :re of the

compound, can be derived. For a given molecular structure, several types and orders of

molecular connectivity indexes (MCIs) can be calculated. Information on the molecular size.

branching, cyclization, unsaturation, and heteroatom content of a molecule is encoded in these

various indices (Kier and Hall, 1976). Molecular connectivity has been utilized to predict K,)

(Sabljic, 1984; Sabljic, 1987b), S (Kenaga and Going, 1980), and other physicochernlical

properties of chemical compounds such as K,,, (Doucette and Andren, 1988) and

bioconcentration factors (Briggs, 1981). The advantage of using MCIs to predict physical-

chemical properties is that once the correlation has been developed only the structure of the

cherical of interest is required as input. No additional experimental parameters are needed.

Although researches have been successful in using MCIs to estimate properties for a variety

of chemicals, the problem of class specific correlations still renins. For example, Gerstl and

Helling (1987) evaluated the use of MCIs in estimating log K,', log Kw and water solubility

for many types of pesticides and non-pesticides. It was found that, while good predictions of

sorption coefficients were possible for a specific groups of compounds, the ability of any one

equation to predict log Koc, based upon one or two MCIs, was rather low for diverse

compound types. In addition, calculation of MCIs can be difficult, especially the higher-order

indices for complex molecules.
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Theoretically Derived Fluations

Two examples of using theoretical equations to estimate properties of environmental

interest include the estimation of a compound's vapor pressure from it boiling point and the

calculation of Henry's Law constant from the ratio of a compound's vapor pressure to its

aqueous solubility.

Using a 72 compound test set of hydrocarbons and halocarbons, Mackay et al. (1982)

developed an expression which enables the estimation of a compound's vapor pressure from its

boiling point. This equation was derived, in part, from the Clausius-Clapeyron equation, itself

derived from the second law of thermodynamics. Mackay et al. noted that this expression may

not be applicable to other classes of compounds and that method errors increase as vapor

pressure decreases.

Another widely used example of a theoretically derived method is the calculation of

Herny's Law constants, H, from a compound's vapor pressure/aqueous solubility ratio. H is

defined as the ratio of a chemicals concentration in air to its concentration in water vhen those

two phases are in contact and at equilibrium. The derivation of this expression requires the

assumption that liquid phase activity coefficients are constant up to the aqueous solubility limit.

Thus, the method is not applicable to compounds with high water solubilities.

Problems Associated with the Estimation Methods (or the need for a decision support system)

In most cases, more than one estimation method is available for a particular input

parameter. Estimation methods however, have widely varying accuracies and indiscriminate

use of these techniques can result in large errors.

Selection and application of QSARs methods requires varying degrees of expertise that

depend on the structure of a particular chemical of interest, knowledge of the mechanism of the

process, the extent of the database used to develop the QSAR, and the complexity of the

structural analysis required to relate structure to the property. For example, some QSARs are

broader than others in the range of chemicals that are covered, and some methods have been

established with a better understanding of the mechanisms or properties involved. In many

8



cases estimation methods are developed from empirical or semiempirical correlations. The

success of the correlation is dependent on many factors including the type aind nunmber of

compounds used in its development.

Incorporation of QSARs into a computer format is a logical and necessary step to gain f[Lii

advantage of the methodologies for simplifying fate assessment. A practical computerized

property estimation program, utilizing QSARs, should include the following attributes: be

simple and flexible to use for both experts and non-experts, include sufficient statistical

information regarding the development of the QASARs so that the range of applicability of

such models can be evaluated, and provide an indication of the accuracy of the estimated

property. A microcomputer-based system for the estimation of parameters ncccssary for fate

assessment models would be of great benefit to USAF agencies responsible for environmental

fate assessment.

STATUS OF RESEARCH EFFORT

Introduction

After evaluating a variety of software approaches, including several expert systems shells,

we decided to build the property estimation system using Apple HyperCard"', software. This

approach will enable us to efficiently build a flexible, simple-to-use interface between the

various modules or subroutines of our property estimation system. This approach will also

permit additional property estimation routines, as they are developed, to be easily added.

The following sections will describe the development and use of the HyperCard lN-based

Property Estimation Program, PEP, and its associated chemical property Database (DB).

Overview of PEP and Chemical Property Database

PEP is currently comprised of three property estimation modules linked to a chemical

property database. The three property estimation modules utilize MCI-property relationships,

UNIFAC-derived activity coefficients, and property-property correlations for compound

property estimates. The modular organization of PEP is illustrated in Figure 1.

9



Property Estimation Program and Database

FinIPrpeyot1Estimatl View Results

P--- and Estimatecor Chemica X -PEP- Data --a "rFbimm"n"--l ,di Property| ofcua'
Md ,,1 Programr of Accuracy

[ |Propertyj )erty
| DoneCorrela.,,,n

Module

Figure 1. Flow chart overview of PEP.DB

COMPUTER HARDWARE/SOFTWARE REQUIREMENTS AND DEVELOPMENT TOOLS

PEP Software Overview

The PEP software system is a HyperCard'm based program that runs on Apple Macintosh

computers. HyperCard is an information/management program included with the purchase of

Macintosh computers. HyperCard offers graphics, information storage, the means to display

information in a variety of formats, the ability to establish links between related information, a

high level language (HyperTalk), the ability to extend HyperTalk by writing new commands in

a compiled language, and a mechanism to transfer control to other Macintosh applications. The

PEP system uses all these features.

PEP Software Components

PEP uses a variety of programs to control the user interface, manage the HyperCard

Stacks, and make various computations. These tools are: HyperTalk Scripts, HyperTalk

External Commands (XCMDs), HyperTalk External Functions (XFCNs) and external

application programs.

10



HyperTalk Scripts

HyperCard m' contains a high level, interpreted language called HyperTalk. PEP makes

extensive use of HyperTalk. A HyperTalk program is called a script. PEP uses scripts to

control the user interface, the stack to stack linkage, and the linkages between the cards in each

stack. This is the standard way in which HyperTalk is normally used. Like most

HyperCard r m applications, PEP uses scripts at all levels in the HyperCard T , hierarchy. Scripts

are used at the button, field, card, background, and stack levels in each of the PEP stacks.

Besides controlling each stack, scripts also do some of the computations in the system.

For example, a script is used to compute estimates of the chemical/physical properties in the

PEP processors as a function of the MCIs.

HyperCard External Commands and Functions

PEP contains several external commands and functions. A HyperCard external

command is an extension to the HyperTalk language. HyperCard v'NI externals in PEP are

written in the language C. External commands and functions are used for several reasons: to

do functions not supported by HyperTalk, to improve the speed of some computations, and to

improve the structure of a software module.

External Applications

External applications are external computer programs that can be run independent of

HyperCard' m . HyperCard m provides a means (the open command) to transfer control to

another application. When the application ends, control returns to HyperCard TM. PEP uses

three applications:

1. ChemDrawrm, by Cambridge Scientific Computing, Cambridge, Mass.

2. Chemintosh m , by SoftShell International Ltd, Grand Junction, CO

3. EstimateMCI, by Utah Water Research Laboratory, Logan, Utah

ChemDraw r m and Chemintoshm are commercial applications. They are used by the PEP

processor stack to provide a means for the user to create a connection table for subsequent

input to PEP. These programs are not distributed with PEP. EstimateMCI is an application

11



designed and coded by the PEP development team. This is a C program. It is distributed with

PEP. Estimate MCI accepts a SMILES string or the contents of a connection table file 1,0r its

input. It then computes the MCIs as a function of the SMILES string or the connection table.

It communicates with the PEP processor stack by passing and receiving infornation through

external files. (See the prologue in the source code file MCI.C for a detailed description of this

interface.)

PEP Software Tools

The PEP software uses a five software tools. These are:

1. HyperCard, version 1.2.5, by Apple Computer, Inc.

2. Think C, version 4.0, by Symantec Corporation, Cupertino, California

3. XTRA, the XFCN, XCMD toolkit, by Adrian Freed, Fidcor USA, Louisville, Colorado

4. ResEdit, version 1.2, by Apple Computer, Inc.

5. Progress XCMD, by Jay Hodgdon, 587 Cutwater Lane. Foster City, Ca. 94404

HyperCard m

This is the foundation of the system. All modules in the PEP system are based on

HyperCard m .

Think C

All external commands and functions (XCMDs, and XFCNS) are written in the language

C, and compiled with version 4.0 of Symantec Corporation's Think C compiler. They are

compiled as Macintosh code resources. The application, estimate MCI, was also written in C

and compiled with the Think C compiler. This was compiled as a Macintosh application.

XTRA

XTRA is a commercial product that eases the burden of writing HyperTalk external

commands and functions. This product provides an interface between HyperCardT1- and code

resources (external commands or functions) compiled with the Think C compiler. In

Macintosh terminology, this interface is called glue. The XTRA program also contains a

library of useful functions for use by HyperCardm external commands.
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ResEdit

ResEdit is a Macintosh resource editor by Apple Computer, Inc. ResEdit is used to attach

each HyperCardm external command and function to the appropriate HyperCard stack.

Progress XCMD

The progress XCMD is a shareware product. This XCMD displays a dialog box with a

moving cursor to show how far along (e.g. % complete) time consuming scripts while

computations are done.

System Requirements

The PEP system requires the following system configuration to run: a Macintosh Plus,

Macintosh SE, or Macintosh II computer, with a hard disk; HyperCard software; Macintosh

system software version 5.0 or greater, running under MultiFinder; and a minimum of 2

megabytes of memory (RAM), with 1000 kBytes of memory allocated for HyperCard.

CHEMICAL PROPERTY DATABASE

Description

Experimentally determined chemical property data was complied from a variety of literature

sources and computerized databases. Using this information, a chemical property database

was developed using HyperCardm. This database was used for developing MCI-property and

property-property relationships and is a major component of the overall property estimation

software system being developed. In its current state, the database includes the following

information: compound name and synonyms, CAS number, chemical formula, molecular

weight, boiling point, melting point, aqueous solubility, octanol/water partition coefficient,

vapor pressure, soil/water sorption coefficients, Henry's Law constants, bioconcentration

factors and appropriate references for each value. The number of compounds currently in the

database for each property is summarized in Table 1.
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TABLE 1. Current number of compounds in chemical property database listed by property

Property name # compounds

Aqueous solubility 365

Octanol/water partition coefficient 196

Soil sorption coefficient (organic carbon normalized) 171

Vapor Pressure 95

Henry's Law constants 76

Bioconcentration Factors 70

The Chemical Property Database also provides the means for the user to search for

chemical compounds, to sort the compounds by name, boiling point, melting point, or

molecular weight, and the ability to transfer to any of the PEP modules. The chemical property

database screen is illustrated in Figure 2.

2,2',4,5..5-pe n t...c. lr.b ip heU1!..

Synonyms C1 C1

____ 0 0'
CAS Number:.

Formula: . .. C12HC 5 ......... . ........... ................. . .....

MP: \77.0 OC
BP: c MV: 326.4

SMILES String: CI-~c.Icjcc(.)2.cC)2.....SI"ILE Si in : C..]-..{C C..C..!. .!)C .C....-.C.(..C.C.!).C 2C !...c. Cj...c2 "................... ......................... ............. ...................

Physioal/Chemioal Properties Values Temp * C Units Ref

Log Aqueous Solubility (S) . ...... ..... ......... moles\Liter
Log Octanol/Vater Partition Coefficients (Kow)

[] Loi  go to PEP\this compound 2....9... ... .............. ............. Pascals
[I Lo go to PEP\new compound - 2 dimensionless
L]ILo go to M CI m odule 1... .................. 2... .............

Lo go to TSR module
g o to Property\Property module

Figure 2. View of PEP's chemical property database
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MCI-BASED PROPERTY ESTIMATION MO)ULE

Overview

Upon entering the MCI module the user must first input the n1ccC.,sarv structural

information. The user can input the required structural information using either SMILES

(Simplified Molecular Input Line Entry System) notation or connection tables generated from

two commercially available two-dimensional drawing programs, ChemDraw" ' , or

Chemlntoshm. A detailed description of SMILES will be incorporated as a help option in the

near future. After the structural information is entered, MCIs are then calculated using an

application external to HyperCardm. The calculation of MC!s will be described in detail in a

following section. After the MCIs are calculated, the results are imported back into

HyperCard m where they can be displayed. Upon importing the MCI the user can then choose

which property are to be estimated. Several MCI-property regression models are available for

each property. A view statistics option is available to aid the user in choosing the most

appropriate model. After choosing the most appropriate regression, estimates Wor the selected

properties can be made. The MCI module results window provides an estimate of the property

along with its calculated accuracy based on the 95% confidence interval calculated from the

regression. The overall operation of the MCI module is illustrated in Figure 3.

Calculation of MCIs

To calculate the MCIs for a given compound, a delta (d) value must first be assigned to

each atom in the structure. Three main d values were computed in this study: nonal, bond,

and valence. Normal deltas were computed by summing the number of bonds (single, double,

etc. are counted as one bond) connected to the atom whose delta is being calculated. The bond

deltas were calculated the same way as the normal deltas except the bonds were taken at their

face value (single is one, double is two, etc.) instead of each bond being equal to one. Valence

deltas for each atom were computed according to equations (2) and (3) (Kier and Hall, 1986):
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[MCI Module

Structural 
Appropriate Estim

F fg rmatin3. CFlow craw Sdi n o tion MCIegression orC derty"C' .. Z.. nnt° V"
E 4 he IntoshTM A&_-- Table

dV =\(Z I I, V 3

nMd is tatisticsResults

View Results

and Estimnate

of Acecurac~v

Figure 3. How chart depicting operation of MCI modufle

dv = Zv - h (2)

d v = \f(Zv - h,Z - Zv)  (3)

where dv is the valence delta, Z v is the number of valence electrons in tile atoll, h is tile

number of hydrogen atoms bound to the atom, and Z is the atomic number of the atoll.

Equation (1) is used for those atoms in the first row of the periodic chart, and equation (2) is

used for all other atoms. An example delta calculation for phenol is shown in Figure 4.

0 0 0

S= 2C '.C C- 'C5 =3 C"- 'C 8= 3

&' O C-1 ' l-
Simple Bond Valence

Figure 4. Delta values calculated for phenol.
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Once the delta values have been calculated for each atom in the molecule, simple, bond and

valence indices of different orders and types can be calculated for a given molecule. The order

refers to the number of bonds in the skeletal substructure or fragment used in computing the

index: zero order defines individual atoms, first order uses individual bond lengths, second

order uses two adjacent bond combinations, and so on. The type refers to the structural

fragment (path, cluster, path/cluster or chain) used in computing the index the MCIs

corresponding to the desired graph fragment types can be calculated. The fragment types are

derived from graph theory and are best described by example, as shown in Figure 5.

C
C-C-C-C C-C"
3rd order path C

3rd order cluster

C

C-C- C c

C c-c
4th order path-cluster 3rd order chain

Figure 5. Four types of graph fragments.

Only path indices are possible for orders less than 3. The symbol 2 X represents a simple

second order index whereas the symbol Iv represents a first order valence index.

Finally, to calculate the MCIs, the following equation is used (Kier, 1980):

m t Y, +1

j ' = 1(4 )

where 8t is the delta of type t determined as above, n is the total possible number of m order

indices in the molecule, m is the number of bonds over which the deltas are taken, t is the type

of indices (normal, bond, or valence), and g is one of the four graph types (path, cluster, path-

cluster, or chain).
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The MCI calculation routine PEP calculates simple, bond and valence indices of several

types (path, cluster, chain, and path/cluster) and orders (0 through 6), if possible, for each

molecule, resulting in a maximum of 54 index values for each molecule.

To account for non-dispersive force effects on aqueous solubility and solubility related

properties zero through six order A valence path indices (AX), as described by Bahnick and

Doucette (1988), are calculated by PEP, in addition to the 54 indices described above. To

calculate AX indices, a nonpolar equivalent is made by substituting C for 0 or N atoms. MCIs

are calculated for the nonpolar equivalent and values for AX can be computed for each type of

index by:

AX = (W)np - X (5)

DEVELOPMENT OF MCI-PROPERTY RELATIONSHIPS

For each property, MCI-property relationships were developed for both general and

specific chemical classes. The database compounds were classified into four general groups:

Non-polar aromatics (compounds having no 0 or N containing functional groups), polar

aromatic (compounds having 0 or N containing functional groups), non-polar non-cyclic non-

aromatics, polar non-cyclic non-aromatics and specific chemical classes such as PCBs, PAHs,

carbamates, ureas etc. In addition, "universal" equations were developed which utilized all

database compounds having values for a specific property.

Two approaches were used to choose the most appropriate variable(s) in developing the

MCI-property regression equations. The first approach used a combination of two indices, one

related to molecular size or dispersive intermolecular forces (i.e., vp0, vp 1, npO, np 1, bpO and

bpl) and one related to the non-dispersive forces (AX). The second approach relied entirely on

a stepwise multiple linear regression program to select the most appropriate variable. If the the

two approaches resulted in models of similar fit the equation resulting from the first approach

was used because of its greater conceptual meaning.
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The MCI-property relationships which have been developed so far are prcisctcd in

Appendix A along with the relevant regression statistics. The infonnation obtained in the first

year of the project shows that MCIs can be used to predict property values for a variety of

organic chemical types using both class specific and more general regression equations. The

universal and more general regression models utilize AX indices. These non-dispensive force

terms are important in predicting physical properties for molecules exhibiting subst'antial

hydrophilicity. The predicted property values are within the experimental uncertainty in their

measurement for the vast majority of chemicals investigated.

In addition, an improvement in predicted values for some of the compounds in the study

could be realized by adjusting the assigned valance values. This ,,ill be further investigatcd in

the second year of study.

STATISTICAL EVALUATION OF MCI-PROPERTY RELATIONSI IPS

All regression equations used in MCI-property relationships (and in the propcrty/property

correlations discussed in a later section) were evaluated for their statistical significance of

regression variables. Each of these steps were independently performed for each regression

relationship that was developed from experimental data.

Examination of Residuals

Residuals, e, are defined mathematically as the difference between the log,0 of an

experimentally determined value, Y1, and its predicted value, Y,':

e = log,0(Y, - Y1'), i = 1, ... n0 b, (6)

Regression analyses are performed subject to a number of important assumptions relative to

the nature of their residuals (Draper and Smith 1981): 1) they are assumed to be independent

of one another in a data set, 2) they are assumed to have a mean of zero, 3) they are assumed to

have constant variance, and 4) they are assumed to be normally distributed. If the regression
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relationship is a true representation of the experimental data and includes all s',ignilicant

variables, then its residuals should confirm the assumptions made above.

A test of the validity of a developed regression expressicai can then be baIscd on an

assessment of the validity of these assumptions regarding its residuals through an examination

of residual plots (residuals versus measured values, residuals versus predicted values, a normal

probability plot of residual values) and calculated statistics.

Plots of residual values versus measured and predicted values will generally take the form

of the relationships shown in Figure 6. Figure 6a indicates residuals that verify the

assumptions made above being independent with constant variance, and normally distributed

about a zero mean. The relationship shown in Figure 6b i,d'cates either a lack of inde'endence

of the residual values, or a regression model that does not adequately represent ob ,:rved data.

i.e., a linear model not adequately representing a .lationship that has curvaturC. :igtrC (w

indicates non-constant variance, while the residual plot in Figure 6d indicates crror in the

analysis such as the absence of the y-intercept term in a regression model. The asminption oI

normally distributed residuals can also be evaluated from a normal probability plot of residual

values. These residuals can be said to be normally distributed if their nonrial probability plot i '

linear.

a. b.

Figure 6. Examples of residual plots.
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C. d.

Figure 6. (Cont'd)

Deviations from the "correct" plot behavior, i.e., Figure 6a, does not attomiticall , mean

:hat there is an error in the regression relationship or in the assumptions of normality, constant

variance, etc., of the residuals. This is particularly true for regression relationships developed

from a small number of experimental observations. Gross deviations from ideal behavior

should be identified, and should be flags for further testing of the validity of assumptions

regarding the data set being analyzed as described by Anscombe and Tukey (1963) and Draper

and Smith (1981).

Analysis of variance

When applied to regression analyses, the analysis of variance (ANOVA) is a test for the

significance of the regression relationship, i.e., are the regression variables a significantly

better descriptor of the behavior of the data than its mean value. An example ANOVA table is

presented in Table 2. In this table, the significance of the regression relationship is indicated

by the F ratio, which represents the ratio of the variance explained by the regression to that

explained by the residuals. The F value for a given relationship is compared to a table of
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critical values for the F distribution for the appropriate number of regression (n) and residual

(n,) degrees of freedom. If the F value for the regression is found to be greater than the critical

F value at a given confidence level, the regression is significant at this confidence level.

Table 2. Sample ANOVA Table

Source dft SStt MSttt F ratio a§

Regression 1 6.326 6.326 6.569 <0.01

Residual 22 21.192 0.963 = s'

Total, corrected SS 23 27.518

t degrees of freedom
It sum of squares
tit mean square = SS/df
§ probability of significance test

Table 2 can be used to calculate the coefficient of determination, r2:

r' = SSiTotal, corrected SS (7)

a value which indicates the proportion of the total variation about the mean regression line that

is described by the regression equation. Table 2 data also allows the calculation of the standard

deviation of the regression, s, which is the square root of the residual mean square. This value

of s can be interpreted as the average residual, or average precision of the predicted value

generated from the regression equation.

Student's t-test for the significance of variables

The coefficients estimated from the regression relationship are not known exactly, as each

regression coefficient has a corresponding standard error. The Student's t value is the ratio of

a regression coefficient value to its standard error, and indicates whether the coefficient value is

significantly different from zero, i.e., whether it can be considered for inclusion in the
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regression equation. The t value for a given coefficient is compared to values in a standard t

table for n - I degrees of freedom, where n = the number of observations, to determine the

probability level for the hypothesis that the coefficient is not statistically different from zero. It

the probability from the standard t table is less than a specified probability level, 0.05 in this

study, then the variable is identified as significant, and is included in the regression equation.

Precision of the predicted value

As described above, the standard deviation of the regression relationship, s, is a measure ot

the average precision of predicted values. However, as indicated by Draper and Smith (1981).

the precision of of the predicted values depends on the values of the independent variables.

These authors indicate that the s value underestimates the uncertainty associated with thC

predicted value, and that a better measure of the precision of Y,' at given values of 1e

independent variable X. is given by the matrix equation:

,J -1
Y=Yo +s 1 +X o '(x'x) X0

where Yo is the predicted value at a given value of X with the precision described as the

product of s times the term under the radical, X is the matrix of independent variable %alucs.

and Xo is the vector of independent variables at which predicted values of Y. are desired. As

the number of observations increases, i.e., fobs > 500, the term under the radical approaches

one, and Equation 7 simplifies to the standard form:

Yo = YO ± S (9)

Prelimingy Results from MCI-Prprty Relatinships

The relationship between estimated and experimental log Kow is illustrated in Figure 7.

The estimated log Kow values were calculated using the universal MCI-log Kow regression

model. A significant improvement is observed when the four general class MCI-log K,,

regression models (aromatic polar, aromatic non-polar, non-aromatic non-polar, and non-

aromatic polar) are used in combination as shown in Figure 8.
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Figure 7. Experimental versus estimated (MCI Universal) log Kw.
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For comparison, log Kow estimated using the computerized group contribution method

(ClogP) of Leo and Hansch are plotted against experimental log K,,,, values for the same

compounds used in Figures 7 and 8 (Figure 9). A comparison between properties estimated by

PEP and those estimated by other established methods will be further explored in the project's

second year.

y = .9625x + .2573, r 2 = .8303
10 . .....

8. 0 O3

4- 6-.1
S0o0

4-0

0 0 est. log Kow (ClogP)

24. - 0 0

0 
0

0 2"
o) 0 0

•-4 -2 0 2 4 6 8

exp. log Kow

Figure 9. Experimental versus estimated (ClogP) log Kow.

UNIFAC MODULE

Overview

As discussed in the background and significance section UNIFAC-derived activity

coefficients have been used to estimate values for aqueous solubility and octanol/water partition

coefficients. However, since the UNIFAC approach is a solution of groups method, its

operation is different than the MCI or property-property modules which are based on

regression analysis.
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Upon entering the UNIFAC module the user must first choose the property to be estimated.

Currently, the UNIFAC module allows for the estimation of aqueous solubility and

octanol/water partition coefficients. We have also included several additional properties which

are of interest in environmental fate modeling: solubility in water/organic cosolvent systems,

solubility in organic solvents, and oil/water partition coefficients. Only the aqueous solubility

and octanol/water partition coefficient options are currently functional.

Upon entering the UNTFAC module the user must first choose the property to be estimated.

After choosing the property, the required structural information must be input using one of

three methods: manual, connection table (option not currently implemented), or SMILES

string. The manual input method requires the user to dissect the molecule into its appropriate

UNIFAC functional groups. A table of UNIFAC structural groups is provided for this

purpose. If either the SMILES or connection table option is used the molecule is automatically

dissected into its UNIFAC structural groups. Once the groups are selected the activity

coefficent(s) can be calculated. The UNIFAC groups are displayed so that the user can verify

their correctness. Figure 10 illustrates the overall operation of the UNIFAC module.

PNIFAC Module

anually Choose

~UNIFAC Group

ChemDraw-" S Connecton Display
Chem lntoshm Table Intermediate

Results

Figure 10. Flow chart depicting operation of UNIFAC module.
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Calculation of UNIFAC derived activity coefficients

UNIFAC (UNIQUAC Functional Group Activity Coefficient) is a solution of groups

method for calculating activity coefficients which requires only the structure of the compound

as input. The calculated activity coefficients can be then used to estimate aqueous solubility,

octanol/water partition coefficients and related properties such as solubility in organic solvents,

solubility in mixed water organic solvents, and oil/water partition coefficients.

In this technique, UNIFAC calculates activity coefficients by dividing them into two parts,

a combinatorial part which reflects the size and shape of the molecule present and a residual

portion which depends on the functional group interactions:

In y, = In f + In ,yR (10)

where yi is the activity coefficient for the ith molecular component in the mixture. The

superscripts refer to the combinatorial (c) and residual parts (R)

Various parameters, such as van der Waals group volumes and surface areas and group

interaction parameters, are input into a series of equations from which thc combinatorial and

residual parts are calculated. Values for the group parameters have been tabulated and can be

found in the literature (Fredenslund et al., 1977 and Gmehling, 1982). The group parameters

of Gmehling (1982) are used in the PEP UNIFAC module.

Estimation of aqueous solubility and octanol/water partition coefficients for UNIFAC derived

activity coefficients

UNIFAC derived activity coefficients can be used to calculate aqueous solubility. The

aqueous solubility (S) of an organic liquid can be approximated as follows:

S = 55.5 aorg/Yaq (11)

where aorg is the activity of the liquid in the organic phase and yaq is the activity coefficient in

the aqueous phase. For hydrophobic compounds, aorg approximately one, since water does
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not significantly dissolve in the organic phase. Thus the aqueous solubility of an organic liquid

can be estimated from the following expression:

S = 5 5/(Yaq)UNIFAC (12)

where ("/aq)UNIFAC is the UNIFA C-derived activity coefficient at infinite dilution. For

solids, the solubilities must be corrected to those of the corresponding supercooled liquids

using the following expression (Yalkowski et al., 1980):

log Ssupercooled liquid = log Ssolid = 0.01(MP - 25) (13)

where MP is the compound's melting point in *C.

Property/protiny correlation module

The property property correlation module is not fully implemented as the current time.

Only a limited number of property/property correlations have been developed using the data

collected in this study. A prototype of the module has been developed using property-property

correlations published in the literature along with several general relationships developed in the

first year of this project. The property-property module should be fully implemented with

several months. A flow chart describing the operation of this prototype module is presented in

Figure 11.

I Property/Property Correlation Module

opertyProperty C1. Flow char dnpui cting oplratin o RuCorrelation Approoset anpd Estiremateuat

Module Property h r t Property(s) Property to EstimateRegression i f Accuracy

Regression

Statistics

Figure 11. Flow chart depicting operation of UNIFAC module

Upon entering this module the user must first choose the property to be estimated. Once

this is done the program then displays the available regression models along the required input
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properties. At this time the user has the option of viewing the regression model statistics.

Once the user chooses the most appropriate regression model and inputs the rcquired

information, the property can be estimated. The results of the property estimation can then be

displayed along with an estimation of its accuracy based on the statistical approach described in

the MCI section.

A summary of the property-property correlations developed in the first year of study are

presented in Appendix B. It is anticipated that the module will be completed in several months.

SUMMARY OF FIRST YEAR ACCOMPLISHMENTS

Chemical property data were compiled for over 700 compounds from a variety of literature

sources and computerized databases. Only experimentally measured propertiCs were used.

Using this information, a chemical property database was created and used for developing

MCI-property and property-property relationships which were then incorporated into a

prototype microcomputer based property estimation program, referred to as PEP.

The property estimation program, PEP, is a decision support system, developed using

HyperCard TM software, which utilizes MCI-property, property-property, and UNIFAC

modules to provide the user with several approaches to estimate physical properties . The

current version of PEP provides estimates of the following properties: aqueous solubility,

octanol/water partition coefficients, vapor pressure, Henry's Law constants, organic carbon

based soil sorption coefficients, and bioconcentration factors.

At the time of this report, the three property estimation modules are implemented, the MCI

module is approximately 90% complete while the UNIFAC and property-property modules are

approximately 50% complete.

SECOND YEAR OBJECTIVES

In the original proposal, the major focus of the second year was to port the program

developed on the Macintosh over to an MS-DOS platform. After reviewing the results obtained
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in the first year, the investigators feel that further development and refining of the strUctUral

property relationships and linking PEP to an environmental fate model would be more

important than implementing PEP on a different computer platform. Thus, we propose to

accomplish the following tasks in the second year of the project:

1. Complete UNIFAC and Property-property modules.

2. Refine MCI-property relationships by examining the relationship between MCI and

properties such as total molecular surface area, polarizability, and dipole moment.

3. Continue to develop chemical property database for current compounds and expand

database by adding biotic and abiotic transformation related properties such as

biodegradation, hydrolysis, and photolysis rates.

4. Investigate the relationship between MCI and transformation rates.

5. Link PEP with VIP (Vadose Zone Interactive Processes) to demonstrate the utility of

combining a property estimation program with an environmental fate model.

6. If time permits, attempt to port PEP and associated database over to a MS-DOS platform.

MISCELLANEOUS PUBLICATIONS

Frazier, J.D. 1990. Estimation of Chemical/Physical Properties Using Molecular Connectivity
Indices for Application in Modeling the Environmental Fate of Organic Compounds. M.S.,

Utah State University.

LIST OF PAPERS PRESENTED AT PROFESSIONAL MEETINGS

Doucette, W.J., H. Fugate, J.D. Frazier, and D.A. Bahnick. 1989. Structure Property
Relationships Utilizing Molecular Connectivity Indices and Total Molecular Surface Areas
for Environmental Fate Modeling. Presented at the International Chemical Congress of
Pacific Basin Societies, December 21, Honolulu, Hawaii, USA

Frazier, J.D, and W.J. Doucette. 1989. Microcomputer Program Utilizing Molecular

Connectivity Indices for Property Estimation. Presented at the International Chemical
Congress of Pacific Basin Societies, December 21, Honolulu, Hawaii, USA

W.J. Doucette, D.J Denne, J.D. Frazier, R.R. Dupont and D.K. Stevens. 1990.
Microcomputer Program Utilizing Molecular Connectivity Indices, Unifac-Derived Activity
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Coefficients, And Property-Property Correlations For The Estimation Of Plhysical

Properties. Presented at the Fourth International Workshop on QSAR in Fnvironmcntaf

Toxicology, September 16-20, Veldhoven, The Netherlands.

LIST OF GRADUATE STUDENTS ASSOCIATED WITH THE RESEARCI-t EFFOIT

Doug Denne, M.S. expected December 1990

Mark Holt, M.S. expected December 1991

Joe Frazier, M.S. 1990
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APPENDIX A



Summary Statistics Cards for MCI-property relationships

STATISTICS Class: S Universal

Regression Results Analysis of Variance Table
Std.

Variable Coef. Error t Source RSS df MSS F
Constant 0.3917 0.1376 2.85 4> Regression 889.176 2 1445 1446
vpl -.9257 0.0316 -29.3 Residual 360.920 362 0.997
Avpl 11.8251 0.1047 17.4 Total 11250.0961364 3.4343

r 2 =71.1% nobs= 365 S= 0.9985

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.

• 0 2 - ", -.. .. , ' - - "

-o -2 -2
-6 __ _ __ _ "" ,,__ Ij ..."

I I I I I I

-7.5 -2.5 0.0 2.5 -6 -3 0 3 -1.5 0.0 1.5
expiermental log S number of standard

deviations

STATISTICS Class: s Universal -ionizable

Regression Results Analysis of Variance Table

Std.
Variable Coef. Error t Source RSS df MSS F
Constant 0.437 0.1379 3.17 4 Regression 1793.809 2 397 462
vpl -. 9748 0.0323 -30.2 Residual 1245.514 286 0.8584
Avpl 2.129 0.1282 16.6 Total 1039.323 288 3.6088

I r 2 = 76.4% hobs= 289 S = 0.9265

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.

o 2 .X... 2, ,_,_. ,_ _--

a-6 -2 - . Go _2
SI II I I I I I I

-7.5 -5.0 -2.5 0.0 -6 -3 0 3 -1.5 0.0 1.5
expiermental log S pnumber of standardexpermnta lo Spredicted devia,ions

....... List- Reur to PEP data baseIn i i I



Summary Statistics Cards for MCI-property relationships

STATISTICS Class: nion-polar, non-cyclic

Regression Results Anlsso arac al

Std..
Variable Coef.- Error t Source RSS d f MSS IF
Constant 2.0477 0.3149 6.5 1 Regression 52.8732 2 26.44 141
npl -2.0254 0.1515 -13.4 ri Residual 6.00701 1132 0.1877
np3 0.9608 0.1625 5.91 Total 158.88021 34 1.7318

_____ ____ ____ ____r
2 = 89.8% nlobs 35 S= 0.4333

Predicted vs. Exp. Residual vs- Predicted Residual vs. Prob.

1A 1A

-5.00 -2.50 -5.00 -2.50 -1 .25 1 .25
log ermpredicted nurnber of stan~dard

expiermentad d evi tios

STATISTICS Class: S Oxygenated atiphatics

Regression Results Anal!~sis of Variance Table
Std.

Variable Coef. Error t Source RSS df MSS IF
Constant 2.9022 0.074 39.2 Regression 196.290 Il1 196 4240
npl -1.1561 0.0178 -6 5.1 Residual 3.65699 9 0. 0463

Total 199.9469180 2.4993

____________ 
2 = 98.2% fobs= 81 S= 0.2152

Log S vs. MCI Residual vs. Predicted Residual vs. Prob.

0A.9 'A 0.9

:V 0.3 . K..~.4

4 6 8 -6 -4 -2 0 -1.25 1.25
number of standard

nipredicted deviations



Summary Statistics Cards for MCI-property relationships

STATISTICS Class: S non-polar, Aromatic

Regression Results Analysis of Variance Table

Std.
Variable Coef. - rror t Source RSS d f MSS F
Constant 0.2478 10.2122 1.17 4> Regression 169.662 12 84.8 349
vp1 -1.111410.0579 -19.2 Residual 26.9593 1 11 0.2429
vp6 0.6617 10.1107 5.98 Total 196.6213 113 1.74

1___ r2 = 86.3% nobs =114 S = 0.4928

Predicted vs. Exp. Residual vs. Predicted Residual vs- Prob.

.~75t.

T-6.25 -3.75 -6.25 -3.75 -150.0 1 .5

number of standardexpiermental log S predicted deviations

STATISTICS Class: S PCBs

Regression Results Analysis of Variance Table
Std.

Variable Coef- Error t Source RSS df MSS F
Constant -1 .8528 0.2204 -8.41 Regression 16.50320 1 6.5032 288
bp6 -6.2017 0.3654 -17 Residual 10.158026 7 0.0226jTotal _ 6.66122618 10.8327

_____ ________ r 2 = 97.6% nlobs =9 S= 0.1503

Log S vs. MCI Residual vs. Predicted Residual vs. Prob.

-4.50 .

01 . ~ 0. 1L

0.4 0.6 -6.00 -4.50 -0.75 0.75
number of standard

b6predicted deviations



Summary Statistics Cards for MCI-property relationships

STATISTICS Class: S ureas

Regression Results Analysis of Variance Table

Std.
Variable Coef. Error t Source RSS df MSS F
Constant 3.758 0.4631 8.12 Regression 32.5444 1 32.54 177
bpl -1.0747 0.0808 -13.3 Residual 1.65604 9 0.184

Total 34.20044 1 0 3.42
r 2 =95.2% nbs= 11 S= 0.4290

Log S vs. MCI Residual vs. Predicted Residual vs. Prob.+ LA I
cn0.0± 0 . • ' OAT

o-3.0 -o.4 . • -0.4

I I : I I 'I I I I ' I

2.50 5.00 7.50 -3.0 0.0 -1 0 1
number of standard

bp predicted deviations

HepLit Return to PE dateabase '

STATISTICS Class: S Anilines

Regression Results Analysis of Variance Table

Std.
Variable Coef. Error t Source RSS df MSS F
Constant 0.9892 0.401 2.47 f Regression 45.5658 1 45.57 95.0
bpl -. 7157 0.0734 -9.75 Residual 9.10898 19 0.4794

Total 154.67478120 2.7337
r 2 =83.3% nobs= 21 S= 0.6924

Log S vs. MCI Residual vs. Predicted Residual vs. Prob.

I.. t1.5 .L1.5

_ - 0 - 0 .5 . .. 5

It0. _Q. . ~0.5o 1L  .LA• " LA os ."
-6.0 .-

0 5 .

I I I I I I II I I

4 6 8 -5.00 -2.50 -1 0 1
number of standard

bpl predicted deviations



Summary Statistics Cards for MCI-property relationships

STATISTICS Class: S Alcohols

Regression Results Analysis of Variance Table

Std.
Variable Coef. Error t Source RSS df MSS F
Constant 2.8524 0.0839 34 O Regression 167.948 1 168 3248
bpl -1.1446 0.0201 -57 Residual 3.41245 166 0.0517

Total 171.3604!w6 7 2.5576

r 2 =98.0% nobs= 68 S= 0.2274

Log S vs. MCI Residual vs. Predicted Residual vs. Prob.

-2.5 to
- 0.3 .'" 0.3yo U . .: .. '.U..

-7.5 0. 0.3 ..

I I II III I I I

4 6 8 -6 -4 -2 0 -1.25 1.25
number of standard

bp predicted deviations
-" ' List Return to PEP |datea base'

STATISTICS Class: S Halogenated benzenes

Regression Results Analysis of Variance Table

Std.
Variable Coef. Error t Source RSS df MSS F
Constant -. 7166 0.20991-3.41 0 Regression 15.5443 2 7.772 102
nc3 -. 8638 0.3031 -2.85 1Residual 2.21780 29 0.0765
vp0 -. 3291 0.0405 -8.12 Total 17.7621 31 0.573

r 2 =87.5% nobs= 32 S= 0.2765

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.

.W . 0.3 0.3
0. J .. . to r

o-5 0.3 . " -0.3 .
I I I I I I I I I I

-4.50 -3.00 -4.50 -3.00 -1 .25 1 .25
number of standardexpiermental log S predicted deviations



Summary Statistics Cards for MCI-property relationships

STATISTICS Class: S PAHs

Regression Results Analgsis of Variance Table
Std-

Yariable Coef. Error t Source RSS df M~S F
Constant -1.1353 0.2894 -3.92 Regression 30.5352 1 130.541 11
npl -. 5011 0.0373 -13.4 Residual 5.74826 34 0.1691

Total 36.28346135 1.0367

Log S vs. MCI Residual vs. Predicted Residual vs. Prob.

-4.50. 
.-.

. -6.00 . . -0.5 - - . .

6 8 10 12 -7 -6 -5 -4125 1/
number of stanidard

nlpredicted devia~tions

STATISTICS Class: S Polar Aromatics

Regression Results Anlyis f aianceTble
Std.

Variable Coef. Error t Source RSS df MSS IF
Constant 1.4051 0.3001 4.68 ~f~ Regression 174.537 2 187.3 97.7
vpo -.4987 0.0396 -12.6 Residual 196.5006 108 0.8935
Avpl 0.5967 0.2204 2.71 Total 1271.0376 110 2.464

_____ _________ .j. r 2 = 64.4% nobs Il S1 = 0.9453

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.

CL0.0 .c 2 w ____-2_
-6 -4 -2 0 -6.0 -3.0 -1 .5 0.0 1 .5

expirmenal lg Snumber of standardexpermnta lo Spredicted deviations



Summary Statistics Cards for MCI-property relationships

STATISTICS Class: Pv PCBs

Regression Results Analysis of Variance Table

Std.
Variable Coef. Error t Source RSS df MSS F
Constant 9.4791 1.815 *5.22 fN Regression 49.8285 2 24.91 115
np3 1-2.4284 0.4481 -5.42 Residual 2.60424 12 0.217
nc5 5.8143 2.15 2.7 Total 52.43274 1 4 3.7452

r 2 = 95.0% nobs = 15 S = 0.4659

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.

-2
S0.0 0.0

osn-6 5-0.8 R-0.8

-6 -4 -2 0 -6 -4 -2 0 .1 0 1
number of standard

Experimental log Pv predicted deviations

STATISTICS Class: Pv Universal

Reglression Results Analysis of Variance Table

Std.
Variable Coef. Error t Source RSS df MSS F

np3 -1.2746 0.0491 9 Residual -62.3490 193 10.675
Total m516.b s94 d5.4977

reobsa 95 S= 0.8216

Log Pv vs. MCI Residual vs. Predicted Residual vs- Prob.

>- 0 .0 - 1 0 . ".' "- ' ., ,

_5 - .0 4 -2

0 2 4 6 8 -6 -3 0 3 -1.25 1.25 2.50
number of standard

np3 predicted deviations



Summary Statistics Cards for MCI-property relationships

STATISTICS Class: Pv PAHs

Regression Results Analyjsis of Variance Table

Std.
Variable Coef. Error t Source RSS df MSS F
Constant 8.7168 0.4656 18.7 Regression 35.5950 1 35.6 450

1pl -1.4892 0.0702 -21.2 Residual 0.71233819 0.0791
ITotal 36.3073341 0 3.6307

____I___ ______jj r 2 = 98.0% nlobs 1 1 S 0.2813

Log PY vs. MCI Residual vs. Predicted Residual v s. Prob.

> . 0 .0 ~0 2. ~ .

~ 0.2 -- 0. -

5 6 7 8 9 -4.5 -1.5 0.0 -1 0 1
num-ber of standa-d

nlpredicted deviations

STATISTICS Class: Pv Halogenated Aromatics

Regression Results Analigsis of Variance Table
Stil.

Variable Coef. Error t Source RSS df MSS F
Constant 6.622 0.349 19 40J Regression 147.169 1 147 49
bpl -1.5592 0.0701 -22.2 Residual 7.14780 24 0.2978

-Total 154316811 25 6.1727

_____ _____ ___ ______ 
2 = 95.4% fobs= 26 S= 0.5457

Log Pv vs. MCI Residual vs. Predicted Residual vs. Prob.

a- 0.0 . ~ 0.00

o ~ ~ ~ 0 ______ j-oj ~. 1.50 1.-

3.0 4.5 6.0 7.5 -5.0 0.0 2.5 -1 0 1 2
number of standard

bipredicted n deviations



Summary Statistics Cards for MCI-property relationships

STATISTICS ClaIss: Kow Universal

Regression Results Analysis of Variance Table
Std.

Variable Coef - Error t Source RSS d f IMSS IF
Constant 1.1527 10.141118.17 Regression 335.264 2 168 315
vp0 0.3978 10.0175 22.7 Residual 102.809 193 0.5327
AVPO -1.984310.12341-16.1 Total 1438.073 195 2.2465

_____ ____ I_____ r 2 = 76.5% n'obs= 196 S =0.7299

Predicted vs. Exp. ResidualI vs- Predicted Residual vs. Prob.

4P 6 A .2 1.25

~ 2 .- 1.25 Op . 1.25

0 2 4 6 2 4 6 8 -1.5 0.0 1.5
number of standard

Experimental log Kow predicted deviations

STATISTICS --Class: Kow ureas

Regression Results Analysis of Variance Table
Std.-

Variable Coef- Error t Source RSS df MSS IF
Constant -3.9333 0.2288 -17. Regression 18.82999 1l 18.83 1504
VPl 1.2594 0.0561 22.5 Residual 0.18667915 0.0373jTotal 19.0165716 3.1694

___________ ____ ____ _ r 2 = 99.0% nlobs = 7 S= 0.1932

Log IKow vs. MCI Residual vs. Predicted Residual vs- Prob.

VO 0.00 0000 - 0.00-
2.5 -- O1-0.250 41-0.250

1 2 3 4 5 -2.50 0.00 -0.75 0.75
number of standard

Y predicted deviations



Summary Statistics Cards for MCI-property relationships

STATISTICS Class: Kow Polar Aromatics
......... .

Regression Results Analysis of Variance Table

Std.
Variable Coef. Error t Source RSS df MSS F
Constant 1.8347 10.2632 6.97 ll Regression 39.0336 2 19.52 52.9
vpo 0.2869 10.028 10.2 Residual 14.7522 40 0.3688
AvpO -1.415210.2617 -5.41 Total 53.7858 42 1.2806

r 2=72.6% nobs= 43 S= 0.6073

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.

'A 0.75 - . . 0.750 . , . ± .s

4' -0.75 " . -0.75

SI I I I I I I I

2.50 5.00 2 3 4 5 -1.25 1.25
number of standard

Experimental log Kow predicted deviations

STATISTICS Class: Kow PCBs

Regression Results Analysis of Variance Table
Std.

Variable Coef. Error t Source RSS df MSS F
Constant 3.554 0.1888118.8 4) Regression 19.8 0627 2 14.9031 167
bp4 -. 9026 0.2567 -3.52 Residual 0.382424j13 0.0294
bp6 5.8313 0.6189 9.42 Total 110.18869115 0.6792

r 2 = 96.2% nobs = 16 S = 0.1715

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.

6.75+ It X015 . X0.250i- 6.00 . 0.15..
65.25 N , F 0.000
L 401502. 4.50 T 0 .1: . . -0.250

I I I I I I I I I I I

4.50 6.00 4.50 6.00 -1 0 1
number of standard

Experimental log Kow predicted deviations



Summary Statistics Cards for MCI-property relationships

STATISTICS Class: Kow PAH's

Regression Results Analysis of Variance Table
Std.

Variable Coef. Error t Source RSS df IMSS F
Constant 0.7812 0.218 3.58 Regression 10.9031 1 10.90 395

1pO 0.4103 0.0206 19.9 Residual 0.303592 11 0.0276{Total 11.20669:112 0.9339
_____J____ ___j ~ J r2=7 fobs =13 S=0.1661

Log Kow vs. MCI Residual vs. Predicted Residual vs- Prob.

n0.125 1A 0.25{

5.25_ _ _ Z__ _ _ 5O_ _ _ _

8 10 12 14 4 5 6 -1 0 1
niumrber of stanidard

n predicted deviations~

STATISTICS Class: Kow nonpolar aromatic

Regression Results Analylsis of Variance Table
Std.

Variable Coef. Error t Source RSS df MSS F
Constant 1.2033 0.1598 7.53 4> Regression 102.413 1 102 1494
vpo 0.4146 0.0187 22.2 Residual 17.6377 85 0.2075

Total 1120.05071 86 1.3959

_____ ____ ____ _____ r 2 = 85.3% nobs = 8 7 S = 0.4555

Log Kow vs. MCI Residual vs. Predicted Residual vs. Prob.

0.75 .0.75

5.0 7.5 12.5 3.0576.2 -1.5 12

number of standard
Y predicted deviations



Summary Statistics Cards for MCI-property relationships

STATISTICS Class: Kow noncyclic Oxygenated

Regression Results Analysis of Variance Table

Std.
Variable Coef.- Error t Source RSS d f IMSS F
Constant -1.6 181 0.1489 -10.9 4> Regression 28.7287011 28.73 713

1pi 1.0591 0.0397 26.7 Residual 0.725310 1 8 0.0403I L Total 129.45401 1 9 1.5502

1 1____ 2 = 97.5% nobs = 20 S= 0.2007

Log Kow vs. MCI Residual vs. Predicted Residual vs. Prob.

2 3 4 5 6 1 2 3 4 -1 0 1
number of standard

bipredicted de vi atiors

STATISTICS Class: Kow noncyclic nonpolar

Regression Results Analyjsis of Variance Table
Std.

Variable Coef . Error t Source RSS d f IMSS F
Constant -.2407 0.2418 -. 9950 Regression 37.0139 1 37.01 225
bpl 1.2633 0.0842 15 Residual 5.26621 32 0.1646ITotal 42.2801 133 1.2812

_____ ___ ___ ___r
2 = 87.5% nobs = 3 4 S = 0.4057

Log Kow vs. MI Residual vs. Predicted Residual vs. Prob.

$A I
404 - I.

1.50 3.00 4.50 2 3 4 5 -1.25 1.25
num-ber of standard

bipredicted deviations



Summary Statistics Cards for MCI-property relationships

STATISTICS Class: Kow anilines

Regression Results Analysis of Variance Table

Std.
Variable Coef. Error t Source PSS df MSS F
Corstant -1.318410.2381 1-5.54 [l Regression 18.5293.12 19.2659 1172
bpl 1.0828 10.0878 112.3 Residual 0.646843112 0.0539
Avp5 -3.9803 0.6307 -6.31 Total 19.17614114 1.3697 1

r 2 = 96.6% nobs = 15 S = 0.2322

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.

4 - 0.15 -'- 0.15 -
1A- _0 .1 5o . ..

t .2 -- 0.15 " : .

1.25 2.50 3.75 b.00 2 3 4 5 -1 0 1
number of standardExperimental log Kow predicted deviations

STATISTICS Class: Kow Alcohols

Regression Results Analysis of Variance Table

Std.
Variable Coef. Error t Source RSS df MSS F
Constant -1.9613 0.1281 -15. Regression 5.03456 1 5.0346 1085
bpl 1.1665 0.0354 32.9 Residual 0.013924 3 0.00461Total 5.048484 4 1.2621

r 2 =99.7% nobs= 5 S= 0.0681

Log Kow vs. MCI Residual vs. Predicted Residual vs. Prob.

3.0 0.04 x0.04-

1.50 4-0.04 "U -0.04

I I tI I I I I I

3.00 3.75 4.50 1 .50 3.00 -0.75 0.00 0.75
number of standard

bp predicted deviations



Summary Statistics Cards for MCI-property relationships

STATISTICS Class: Koc Universal

Regression Results Analysis of Variance Table

Std.
Variable Coef. Error t Source RSS d f MSS F
Constant 0.e6111 0.1767 3.46 Regression 159.141 2 79.6 138
npl 0.4647 10.0289 16.1 hi Residual 96.6154 168 0.575
AvpO -1.2243 0.1176 -10.4 Total 255.7564 170 1.5044

r 2 =62.2% nobs= 171 S= 0.7583

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.

6,0
o 30 1.5 . .. 1.5 ,"o. t. T .. '.' " -

I, . ..... St
-1- 5 - - 1T0.0 • • .._ .-

I II I I I tI I I

0 2 4 6 -0.0 1.5 3.0 4.5 -1.5 0.0 1.5
number of star, lard

Experimental log Koc predicted deviations

STATISTICS Class: Koc Ureas 2
.................... . ! .

Regression Results Analysis of Variance Table
Std.

Variable Coef. Error t Source RSS df MS F
Constant -. 4476 0.45021-.99 4[J Regression 7.64836 2 3.8242 24.8
Avpl -. 0235 0.4433 -.053 Residual 2.92537 19 0.154
npO 0.2568 0.0385 6.68 Total 10.57373 21 0.5035

r 2 =73.2% nobs = 22 S= 0.3924

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prub.

-a * 1A 1 A t
t . 2 0.3 • -0.3 ".o 2.25 ,

o.75 ".' •.

I I I I I I I I I

1.50 3.00 0.75 2.25 -1.2 -0.4
number of standard

Experimental log Koo predicted dev iations



Summary Statistics Cards for MCI-property relationships

STATISTICS Class: Koc Ureas

Regression Results Analysis of Variance Table

Std.
Variable Coef. Error t Source RSS df MSS F
Constant 0.8342 0.1578 5.29 1] Regression 9.29029 2 4.6451 68.8
np6 1.6588 0.148 11.2 Residual 1.28344 19 0.0675
nch6 -6.2556 1.515 -4.13 Total 110.5737 21 0.5035

r2= 87.9% nobs=-. 22 S = 0.2599

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.

3.00 M I M ..
0.0 _ _ " _ _ 0.0 +

-1.50 - -, Z
.- 0.4 . ."0.4

t I I I I I I! I I I I

1.50 3.00 1.50 3.00 -0.6 -0.4 -0.2 -0.0
number of standard

Experimental log Koc predicted deviations

STATISTICS Class: Koc Triazines

Regression Results Analysis of Variance Table

Std.
Variable Coef. Error t Source RSS df MSS F
Constant -. 5643 0.7221 -.781 jC Regression 1.60125 2 0.80062 32.6
bpl 0.6296 0.0919 6.85 Residual 0.2213189 0.0246
AvpO -. 9382 0.3763 -2.49 Total 11.8226 11 0.1657

r 2 =87.9% nobs= 12 S= 0.1568

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.

V I
40 0.15 0.15

2.1 15 --- 0.15 -

I I I I I I I I I I I I

2.1 2.4 2.7 3.0 2.1 2.7 -1.25 -0.75
Experimental log Koc pnumber of standardExprientl og ocpredicted deviations



Summary Statistics Cards for MCI-property relationships

STATISTICS Class: Koc Polar, non-aromatic, non-cycitic

Regression Results Analysis of Variance Table
Std.

Variable Coef. Error t Source RSS df MSS F
Constant 0.061510.23 0.267T ~ Regression 10.3570 ~2 5.178 80.2
npO 0.2486 0.0234 10.6 ri Residual 0.5164958 0.0646
Avpl 0.3348 0.0762 4.39 Total 110.87349 10 1.0873

_____ _____J____ ____~j r2 = 95.2% nobs = 1 1 S= 0.2541

Predicted vs. Exp. Residual vs. Predicted Residual vs- Prob.

3 0.2 -0.

d'

1.50 3.00 1 2 3 4 -0.15 0.15 0.45
number of staridard

Experimental log Koc predicted deviaitionas

STATISTICS Class: Koc PCBS

Regression Results AnalyIsis of Variance Table
Std.

Variable Coef -Error t Source RSS d f MSS F
Constant 0.0018 1.252 0.001 4) Regression 1.84147 1 1.8415 17.81c3 3.3677 0.799 4.21 Residual 10.518298 5 0.1037

I1Total 12.359768 6 10.3933
.2 _______ 2 78.0% nobs = 7 S 0.3220

Log Koc vs. MCI Residual vs. Predicted Residual vs- Prob.

0 .6~ 0.25 -- 0.25I

4. 4 0.25 4, 0.25+

1.4 1.5 1.6 1.7 4.8 5.2 5.6 0.15 0.45
number of standard

nc3 predicted deviations



Summary Statistics Cards for MCI-property relationships

STATISTICS Class: Koc PAHs

Regression Results Analysis of Variance Table

Std.
Yariable Coef. Error t Source RSS df MSS F
Constant 0.2187 0.322 0.679 4> Regression 24.1463 1 24.151 196

10.5672 0.0405 14 Residual 1.60011 13 0.1231
Total 25.74641 1 4 11.839

r 2 =93.8% nobs= 15 S= 0.3508

Log Koc vs. MCI Residual vs. Predicted Residual vs. Prob.

X 0.4 ,n 0.40 5.00 I ,* O.O -- 0. 0 .
2.50 &-0.4 -- -0.4 T

i I I I I I

4 6 8 10 2.50 3.75 5.00 6.25 0.4 0.8 1.2 1.6
number of standard

np predicted deviations

STATISTICS Class: Koc non-polar, non-aromatic, non-

Regression Results Analysis of Variance Table

Std.
Yariable Coef. Error t Source RSS df MS5 F
Constant 0.3614 0.3952 0.915 0 Regression 0.815111 1 0.8151 14.6
bpO 0.3604 0.0944 3.82 Residual 0.559114 1 0 0.0559

Total 11.374225 1 1 0.1249

r 2 =59.3% nobs= 12 S= 0.2365

Log Koc vs. MCI Residual vs. Predicted Residual vs. Prob.

o *0.2 0.2v 2.1 i

,2. -*." 21 ."
.2 4 -0.2 -- .0.21.5 n

I I I I I I I '

3.00 3.75 4.50 1.50 1.75 2.00 2.25 0.4 0.6 0.8 1.0
number of standard

bpO predicted deviations
H Help , List Return to PEP Jdatabase : t



Summary Statistics Cards for MCI-property relationships

STATISTICS Class: Koc non-polar, Aromatics

Regression Results Analysis of Variance Table

Std.
Variable Coef. Error t Source RSS df MSS F
Constant 0.3889 0.177712.19 f7] Regression 60.5243 2 30.26 240
npl 0.5983 0.0273 21.9 Residual 4.54683 136 0.1263
bch6 -3.4659 0.484 -7.16 Total 65.07113 38 1.7124

r 2 =93.0% nobs= 39 S= 0.3554

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.

.4-5 a 0.4 . . •0.4

-o -I °* . . -0. r

I J I . I

2.50 3.75 5.00 6.25 3 4 5 6 0.75 1.50 2.25
number of standard

Experimental log Koo predicted deviations

STATISTICS Class: Koc Halogenated Aromatics

Regression Results Analysis of Variance Table

Std.
Variable Coef. Error t Source RSS df MSS F
Constant -. 2045 0.5708 -.358 Regression 2.0398011 2.0398 131 .6
npl 0.7411 0.1318 5.62 Residual 0.515841 8 0.0645

Total 12.555641 9 0.284

r 2 = 79.8% nobs = 10 S= 0.2539

Log Koc vs. MCI Residual vs. Predicted Residual vs. Prob.

3.9*

v 3.3 " 0.25 . 025
-2 2.7 - .5 ' - "

-0.25 -0.25
I I I, I I I I I II t

3.5 4.0 4.5 5.0 5.5 2.4 2.8 3.2 3.6 1.2 1.6 2.0
number of standard

np predicted deviations
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Summary Statistics Cards for MCI-property relationships

STATISTICS Class: Koc Carbamates

Regression Results Analysis of Variance Table
Std.

Variable Coef. Error t Source RSS df MSS F
Constant 0.1814 0.3295 0.55 Regression :2.6302 1 2.635 48.4
vpO 0.2523 0.0363 6.96 Residual 0.598675 11 0.0544

Total 3.233695 2 0.2695

r 2 = 81.5% nobs = 13 S= 0.2333

Log Koc vs. MCI Residual vs. Predicted Residual vs. Prob.

LA . 0.4
v 28 0.0 - ", 0.0 ,--

2. -0.4 - -0.4
I I i II I I II I

7.5 9.0 12.0 2.0 2.4 2.8 3.2 -0.75 -0.25
number of standard

Vp0 predicted deviations

STATISTICS Class: Koc Anilines
=o .... . .,'. ..-. ..-.-

Regression Results Analysis of Variance Table

Std.
Variable Coef. Error t Source RSS df MSS F
npl 10.5734 0.0776 7.39 Residual 0.76315417 0.109

,vpO -1 .2366 0.3295 -3.75 Total 10.7052419 1.1895

r2 = 92.9% nobs = 1 0 S = 0.3302

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.

" 3.75 --
$3 0.25 • , 0.25

. 2.25 &-0.25 • &-0.25

I I I I I I ' II I

2.25 3.75 2.25 3.75 -0.0 0.8 1.2
number of standard

Experimental log Koo predicted deviations

[IlHelp List -Return to PEP, , ...,Jdata base



Summary Statistics Cards for MCI-property relationships

STATISTICS Class: Koc Acetanilide

Regression Results Analgsis of Variance Table

Std.
Variable Coef. Error t Source RSS df MSS F
Constant 0.3745 10.3781 0.99 Ic] Regression 11 .58075 2 0.7904 11.8
Avpl -1.232310.5152 -2.39 Residual 0.403537 6 0.0673
npl 0.3512 10.0742 4.74 Total 1.984287 0.248I2

r2 = 79.7% nobs = 9 S= 0.2593

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.

io 2.4 " 02

o .2 -0.0  •
. 6 - w -02 • "

-0. - -0
I I I I I I I I I I I

1.6 2.0 2.4 2.8 1.6 2.0 2.4 -1.50 -1.00 -0.E
number of standardExperimental log Koo predicted deviations

STATISTICS Class: H Universal

Regression Results Analysis of Variance Table
Std.

Variable Coef. Error t Source RSS df MSS F
Constant 0.0003 0.2096J0.001 IS] Regression 93.9802 2 46.99 174.7
npl -. 2496 0.0422 -5.91 1 Residual 45.9296 73 0.6292
Avpl -1.667 0.2082 -8.01 jTotal 139.9098 75 1.8655

r 2 =67.2% nobs= 76 S= 0.7932

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.

0.01~~"o 1.25 - - 1""R -3.*

L"a ..i' .1..
.- , I I -1.25 :"" '=".c.5 ."...
.6.0

I I I II I I I I' I I

-6 -4 -2 0 -6.0 -3.0 -1.25 1.25
number of standardExperimental log H predicted deviations
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Summary Statistics Cards for MCI-property relationships

STATISTICS Class: H nonpolar Aromatics

Regression Results AnalUsis of Variance Table
Std.

Variable Coef. Error t Source RSS df MSS F
Constant -. 9387 0.1182 -7.94 Regression 17.3912 3 5.797 79.7
np6 -1.5775 0.1463 -10.8 Residual 2.47279 34 0.0727
bp4 1.5632 0.209 7.48 Total 19.86399 37 T0.5369

1107-2.76 r 2 =87.6% nobs = 38 S= 0.2697

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.

0.75 0.7t

.- 1.5 4-02502
-2.5 - -0.25 " .. -0.25

I1 1I1 1I I I

-2.25 -0.75 -2.5 -1.5 -0.5 -I .25 1.25
number of standard

Experimental log H predicted deviations
HelpList Return to PEP date base

STATISTICS Class: H Halogenated Aliphatics

Regression Results Analysis of Variance Table

Std.
Yariable Coef. Error t Source RSS df MSS F

vpl -1.2237 0.1559 -7.85 Residual 1.60216 17 0.0942

np2 10.6848 0.0961 17.13 Ttal 7.99658 19 0.4209 3.

r 2 =80.o% nobs= 20 S= 0.3070

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.

10.6 -0.6
0.00000 . - "..4 ... 0. " " 0.0 ..

CL0.00000 " -0.6 - -0.6
, , , I I I I I I I I

-1.50 0.00 -1.5 -0.5 0.5 -1 0 1
number of" standardExperimental log H predicted deviations



Summary Statistics Cards for MCI-property relationships

STATISTICS Class: H PCBs

Regression Results Analysis of Variance Table

Std.
Variable Coef. Error t Source RSS df MSS F
Constant -2.477 0.099 -25 JJ Regression 3.26115 12 16306 111
npc6 0.3676 0.0247 14.9 Residual 0.175504 12 0.0146
vpc4 -1.1555 0.0895 -12.9 Total 3.436654 14 0.2455

r 2 =94.9% nobs= 15 S= 0.1209

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.

0' _0 I
t-1.6r O

-- 2.4t __ _ _ _ -.o} . i0.1  -0.I_ __

I I I I I I I I

-2.4 -1.6 -2.4 -1.6 -1 0 1
number of standardExperimental log H predicted deviations

•Help List IReturn to PP t bs

STATISTICS Class: H PAHs

Regression Results Analysis of Variance Table

Std.
Variable Coef. Error t Source RSS df MSS F
Constant 0.8541 0.2958 2.89 4 Regression 0.687162 1 0.6872 1110
npl -. 5197 0.0495 -10.5 Residual 0.02492 4 0.0062

Total 0.712086 50.1424

r 2 =96.5% nobs = 6 S= 0.0789

Log H vs. MCI Residual vs. Predicted Residual vs. Prob.

z -2.1 0.05 0.05

-2.7 --- o.o5 w-
I I I I l I I I I I I I

5.0 5.5 6.0 6.5 7.0 -2.7 -2.1 -0.75 0.75
number of standard

np predicted deviations
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Summary Statistics Cards for MCI-property relationships

STATISTICS Class: BCF Universal

Regression Results Analyjsis of Variance Table
Std-

Variable Coef. Error t Source RSS df MSS F
Constant 0.9816 0.2329 4.21 Regression 60.1143 2 130.06 161.6
npl 0.4347 0.0415 10.5 ri Residual 32.7178 67 0.4883
AVP0 -1 .9999 0.2886 -6.93 Total 92.8321 69 1.3454

_______t] r 2 = 64.8% nlobs =70 S =0.6988

Predicted vs. Exp. Residual vs. Predicted Residual v s. Prob.

-- 1.50 .1.50-

Iii . o .A
CL'- .0 0 1 5

1 2 3 4 2 3 4 5 -1.25 1.25
number of standard

Experimental log BCF predicted deviations

STATISTICS Class: BCFPCBs

Regression Results Analyisis of Variance Table
Std.

Variable Coef. Error t Source RSS df tISS IF
Constant 7.5756 0.6252 12.1 4} Regression 10.641375 1 0.6414 127.9
nch6 -21.162 4.009 -5.28 Residual 10.138126 6 0.023

Total 10.77950117 10.1114

____ ______ ___r
2 = 82.3% nlobs -- 8 S=0.1517

Log BCIF vs. MCI Residual vs. Predicted Residual vs- Prob.

u4.50 1A X I0i "i 0.1 0.1__ _

4.00 .F -0 . .~ I

0.1425 0.1575 4.0 4.2 4.4 4.6 -0.75 0.75
number of standard

nch6 predicted deviations
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Summary Statistics Cards for MCI-property relationships

STATISTICS Class: BCF Polar Aromatics

Regression Results Analysis of Variance Table
Std.

Variable Coef. Error t Source RSS df MSS F
Constant 1.8367 0.5026 3.65 Regression 4.68185 2.3409 11.5
p -1.3739 0.4012 -3.42 Residual 2.65010 13 0.2039

vpO 0.1889 0.0489 3.87 Total 7.33195 15 0.4888

r 2 =63.9% nobs= 16 S= 0.4515

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.

. 3.0 , 4 0 . -.

CL 2.0-0.4 " -0.4 - -.0 L, t .

I I I I I I I I I I

2.25 3.00 3.75 2.0 2.5 3.0 3.5 -1 0 1
number of standard

Experimental log BCF predicted deviations

STATISTICS Class: BCF Halogenated Aliphatics

Regression Results Analysis of Variance Table
Std.

Variable Coef. Error t Source RSS df MSS F
Constant -1.7216 0.3819 -4.51 < Regression 8.51622 11 8.5162 79.8
npo 0.632 0.0707 8.93 Residual 0.853741 8 0.1067

Total 9.369961 9 1.0411

r 2 = 90.9% nobs = 1 0 S = 0.3267

Log BCF vs. MCI Residual vs. Predicted Residual vs. Prob.

0.00 - 0.00

1 -0.50 w 0.50

I I I I I I I I. .. ,

3.75 6.25 0.75 2.25 -1 0 1
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APPENDIX B



STATISTICS Class:s Universal from Koc

Regression Results Analysis of Variance Table
Std.

Variable Coef. Error t Source RSS df 1135 I
Constant 0.321341 0.2966 1.08 i Regression 152.404 1 152 1 9- i
log Koc -1.27402 0.0915 -13.9 Residual 51.8595 66 0.78575

Results in units of mol/L r2= 74.6% nobs = 68 S = 0.88 

Log S vs. Log Koc Residual vs. Predicted Residual vs. Prob.

I jt .........ot. ....II
-~ -v . .00- ~. 0.00

-< . . . , .. 0.,-,

711
",, -I- -: 0 0¢ • I" -I0-6. ,,,-2.50 k e

0 2 4 6 -6 -4 -2 0 -1.25 1

log Koc predicted number of standard ,eiati,:r,-

STATISTICS Class:s Universal from Kow

Regression Results Analysis of Variance Table
Std.

Variable Coef. Error t Source RSS df MSS F
Constant 0.73309 0.1511 485 i ] Regression 442.425 1 442 853log Kow -1.1348 0.0388 -29.2 Residual 89.6957 1 73 0.518472

Results in units of mol/L r2= 83.1% nobs = 175 S= 0.7201

Log S vs. Log Kow Residual vs- Predicted Residual vs. Prob.
2. 3.0 3.0
0.0 1.5 .1.5

-2.5 0.0 - - ' - . 0.01- I _. .. ." .' I .
-5.0 1 ,S -I.5 -1I.5

I L .. . 3.

-I I I II I I - - - - -

1.5 3.0 4.5 6.0 -6.0 -3.0 -1.5 00 1 5

log Kow predicted number of standard de--, 1i,:,r,



STATISTICS Class:s All eq 2-15 tb 2-3 from Kow

Regression Results Analysis of Variance Table
Std.

Yariable Coef Error t Source RSS d f MSS F
Constant o.978 I'
Log Kow -1 .339

Results in units of mol/L 172= 87.4 nobs = 156 S =

Predicted vs. Exp. Residual vs- Predicted Residual vs. Prob.

STATISTICS Class:s Phosphate esters from Kow

Regression Results Analysis of Variance Table

Std.
Yariable Coef Error t Source RSS df MSS F

Constant 12.9
Log Kow -2.38

Results in units of pLmol/L r2= 65.6 nobs = 1S1 S

Predicted vs- Exp. Residual vs. Predicted Residual vs. Prob.

....... ... .. ... I I I I III I .. ..



STATISTICS Class.s Halobenzenes from Kow & Mp

Regression Results Analysis of Variance Table

Std.
Yariable Coef Error t Source RSS df M55 F

Constant 0.71 78
Log Kow -0.9874
M p -0.0095

J r~2= 99.0 3

Results in units of mol/L 9 nobs =  S

Predicted vs. Exp. Residual vs- Predicted Residual vs. Prob

STATISTICS Class:s PAHs from Kow & Mp

Regression Results Analysis of Variance Table

Std.
Yariable Coef. Error t Source RSS df ss F

constant -0.012
Log Kow -0.88
MP -0.01

Results in units of mol/L f-2= 97.9 nobs= 32 S =

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.



STATISTICS Ciass: Kow Universal from S

Regression Results Analysis of Variance Table

Std-
Yariable Coef. Error t Source RSS df MSS F

Constant 1.14855 0.0955 12.0 j~JRegression 285.65 1 286 853
log S (mol/L) -0.73263 0.0251 -29.2 Residual 57.9116 173 0.33475

Results in units of r2= 83.1% nobs = 1 75 S 0.578C

Log Kow vs. Log S Residual vs. Predicted Residual vs. Prob.
6.0 -'... :;-I.51.25 -

1.25 12
4.5

"-1.25 . "-1.25 .
-.5 ,. ,2 -

I I I I I I I I -

-5.0 0.0 2.5 0 2 4 E. -1.5 0.1 15

corr. log S predicted number ofi tandard de,,tr,-

l~iHepJ Delete K ' ae b'aset......[If.

STATISTICS Class: Koc Pesticides eq 4-5 from S

Regression Results Analysis of Variance Table

Std.
Variable Coef. Error t Source RSS df MSS F

Constant 3.64
log S mg\L -0.55

Results in units of r2= 71% nobs= 106 S

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob.



STATISTICS Class: Koc Universal from S

Regression Results Analysis of Variance Table
* Std.

Yariable Coef Error t Source R55 df MSS F
Constant 0.9553-72 0.1653 5.18 Regression 70.0563 1 70.06 194
log S (mol/L) -0.58564 0.0421 -13.9 Residual 23.8385 66 0.36119

Results in units of r 2 = 74.6% nobs = 68 S = 0.601

Log Koc vs. Log S Residual vs. Predicted Residual vs. Prob.

D 1
¢, 4 __ __ __:.._ __ __ _

List

I I I II I I I I I

-6.0 -3.0 2 -3- 4 . -1I 25 0.0'_ 1.5

corr. log S predicted rumber of starndard deii.$i ,:,nrs

STATISTICS Class: Koc Pesticides eq 4-8 tb 4-1 from Kow

Regression Results Analysis of Variance Table

Std -
Yariable Coef. Error t Source RS5 df MSS F

Constant 1.377
log Kow .544

Results in units of r 2 = .74 nobs = 45 S =

Predicted vs. Exp. Residual vs. Predicted Residual vs. Prob-



STATISTICS Class: BCF Universal from Kow

Regression Results Analysis of Variance Table

Std.
Variable Coef. Error t Source RSS df MSS F

Constant -0.58027 0.1978 -2.93 ~j Regression 46.9153 1 46.92 331
log Kow 0.880366 0.0484 18.2 Residual 6.51802 46 0 14170

Results in units of r2= 87.8% nobs = 48 S = 0 3764

Log BCF vs. Log Kow Residual vs- Predicted Residual vs. Prob.

0.5 0.5

0.0 . 0.-

--.5 -0.5

1 3,;-1.0 -1.0

I I I I I t I ! I I

2.50 3.75 5.00 1 2 3 4 -I 1 2

log Kow predicted number of Standard deviatiorns

STATISTICS ClasS: BCF Universal from Koc

Regression Results Analysis of Variance Table

Std.
Variable Coef. Error t Source RSS df MS5 F

Constant -0.81607 0.3946 -2.07 IjiI Regression 28.7887 1 28.79 89.3
log Koc 1.24095 0.1313 9.45 Residual 9.02727 28 0.32240

Results in units of r2= 76.1% nobs : 30 S = 0.5678

Log BCF vs- Log Koc Residual vs. Predicted Residual vs. Prob.

0.5 .0.5

I.0 " 0.0

'A-o-1.0t -1 -0T
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Subgroup name, M.W.

CH3, 15.035 CHO,25.03 CH3CN,41.0527 CH2SH,47.0949

C H2,14.027 CH3000,59.0448 CH2CN,40.0447 Furf ur a1, 96.08

CH, 13.019 CH2COO,58.0369 COOH,45.01 67 (CH2OH)2,62.0686

C, 12. 01 1 HCOO,41.0294 HCOOH,46.0246 1126 9045

0H2=CH,27.046 CH30,31 .0344 CH2CI,49.48 B r,7 9. 9 04

CH=CH,26.038 CH20,30.0265 CHCI,48.472 CHWC,25.0299

CH2=C,26.038 CH-O,29.0186 CC1,47.464 C=G.24.022

CH=C,25.03 FCH2O,49.0249 CH2CI2,84.933 DMSO,78. 13

C=0,24.022 CH3NH2,31 .0575 CHC12,83,925 ACRY,53-06

ACH, 13.019 CH2NH2,30.0495 CC12,82.917 Cl-(C=C),59.475

AC,i12. 011 CHNH2,29.0415 CHCI3,1 19.378 ACF.31 .0094

ACCH3,27.046 CH3NH,30.0496 0013,118.37 DMF-i,

AC0H2,26.038 CH2NH,29.041 6 C014,153.823 DMF-2,

ACOH,25.03 GHNH,28.0336 ACCI,47.464 CF3,69.0062

OH, 17.0073 CH3N,29.0417 CH3NO2,61.0405 CF2,50.0078

CH3OH,32.0423 CH2N,28.0337 CH2N02,60.0325 CF,31 .0094

H20, 18.0152 ACNH2,28.0337 CHNO2,59.0245

ACOH,29.0183 05H5N,79.1012 ACNO2,58.0165
CH3C0,43.0454 C5H4N,78.0933 CS2,76.131

0H200,42.0375 05H3N,77.0854 OH3SH,48. 1029

Volume Impor-t
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